首页
壁纸
留言板
友链
更多
统计归档
Search
1
TensorBoard:训练日志及网络结构可视化工具
12,595 阅读
2
主板开机跳线接线图【F_PANEL接线图】
7,392 阅读
3
Linux使用V2Ray 原生客户端
6,475 阅读
4
移动光猫获取超级密码&开启公网ipv6
5,363 阅读
5
NVIDIA 显卡限制功率
3,184 阅读
好物分享
实用教程
linux使用
wincmd
学习笔记
mysql
java学习
nginx
综合面试题
大数据
网络知识
linux
放码过来
python
javascript
java
opencv
蓝桥杯
leetcode
深度学习
开源模型
相关知识
数据集和工具
模型轻量化
语音识别
计算机视觉
杂七杂八
硬件科普
主机安全
嵌入式设备
其它
bug处理
登录
/
注册
Search
标签搜索
好物分享
学习笔记
linux
MySQL
nvidia
typero
内网穿透
webdav
vps
java
cudann
gcc
cuda
树莓派
CNN
图像去雾
ssh安全
nps
暗通道先验
阿里云
jupiter
累计撰写
358
篇文章
累计收到
72
条评论
首页
栏目
好物分享
实用教程
linux使用
wincmd
学习笔记
mysql
java学习
nginx
综合面试题
大数据
网络知识
linux
放码过来
python
javascript
java
opencv
蓝桥杯
leetcode
深度学习
开源模型
相关知识
数据集和工具
模型轻量化
语音识别
计算机视觉
杂七杂八
硬件科普
主机安全
嵌入式设备
其它
bug处理
页面
壁纸
留言板
友链
统计归档
搜索到
1
篇与
的结果
2022-01-07
Yolov5s:Yolov5sv6.0网络结构分析与实现
1.参考网络结构图(v5.0的)2. 配置文件解析原始配置文件yolov5s.yaml# YOLOv5 by Ultralytics, GPL-3.0 license # Parameters nc: 80 # number of classes depth_multiple: 0.33 # model depth multiple width_multiple: 0.50 # layer channel multiple anchors: - [10,13, 16,30, 33,23] # P3/8 - [30,61, 62,45, 59,119] # P4/16 - [116,90, 156,198, 373,326] # P5/32 # YOLOv5 v6.0 backbone backbone: # [from, number, module, args] [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2 [-1, 1, Conv, [128, 3, 2]], # 1-P2/4 [-1, 3, C3, [128]], [-1, 1, Conv, [256, 3, 2]], # 3-P3/8 [-1, 6, C3, [256]], [-1, 1, Conv, [512, 3, 2]], # 5-P4/16 [-1, 9, C3, [512]], [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32 [-1, 3, C3, [1024]], [-1, 1, SPPF, [1024, 5]], # 9 ] # YOLOv5 v6.0 head head: [[-1, 1, Conv, [512, 1, 1]], [-1, 1, nn.Upsample, [None, 2, 'nearest']], [[-1, 6], 1, Concat, [1]], # cat backbone P4 [-1, 3, C3, [512, False]], # 13 [-1, 1, Conv, [256, 1, 1]], [-1, 1, nn.Upsample, [None, 2, 'nearest']], [[-1, 4], 1, Concat, [1]], # cat backbone P3 [-1, 3, C3, [256, False]], # 17 (P3/8-small) [-1, 1, Conv, [256, 3, 2]], [[-1, 14], 1, Concat, [1]], # cat head P4 [-1, 3, C3, [512, False]], # 20 (P4/16-medium) [-1, 1, Conv, [512, 3, 2]], [[-1, 10], 1, Concat, [1]], # cat head P5 [-1, 3, C3, [1024, False]], # 23 (P5/32-large) [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) ]配置文件解析Model( (model): Sequential( (0): Conv(3,32,6,2,2) # 3x640x640-->32x320x320 (1): Conv(32,64,3,2) # 32x320x320-->64x160x160 (2): C3(64,64) # 64x160x160-->64x160x160 (3): Conv(64,128,3,2) # 64x160x160-->128x80x80 #P3 (4): C3(128,128) # 128x80x80-->128x80x80 (5): Conv(128,256,3,2) # 128x80x80-->256x40x40 #P4 (6): C3(256,256) # 256x40x40-->256x40x40 (7): Conv(256,512,3,2) # 256x40x40-->512x20x20 #P5 (8): SPP(512,512,[5, 9, 13]) # 512x20x20-->512x20x20 (9): C3(512,512) # 512x20x20-->512x20x20 #P6 (10): Conv(512,256,1,1) # 512x20x20-->256x20x20 (11): nn.Upsample(None, 2, 'nearest') # 256x20x20-->256x40x40 (12): Concat() # [x,p4]==>512x40x40 (13): C3(512,256) # 512x40x40-->256x40x40 (14): Conv(256,128) # 256x40x40-->128x40x40 (15): nn.Upsample(None, 2, 'nearest') # 128x40x40-->128x80x80 (16): Concat() # [x,p3]==>256x80x80 (17): C3(256,128) # 256x80x80-->128x80x80 #out1 (18): Conv(128,128,3,2) # 128x80x80-->128x40x40 (19): Concat() # [x,p4]==>384x40x40 (20): C3(384,256) # 384x40x40-->256x40x40 #out2 (21): Conv(256,256,3,2) # 256x40x40-->256x20x20 (22): Concat() # [x,p5]==>768x20x20 (23): C3(768,512) # 768x20x20 -->512x20x20 #out3 (24): Detect( (0): Conv2d(128, 255) # 128x80x80-->((cls_num+4+1)*anchor_num)x80x80 #out1_detect==>[3, 80, 80, 85] (1): Conv2d(256, 255) # 256x40x40-->((cls_num+4+1)*anchor_num)x40x40 #out2_detect==>[3, 40, 40, 85] (2): Conv2d(512, 255) # 512x20x20-->((cls_num+4+1)*anchor_num)x20x20 #out3_detect==>[3, 20, 20, 85] ) ) )3.代码实现3.1 公共基本块import torch import torch.nn as nn import warnings class Conv(nn.Module): # 标准卷积 def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups super().__init__() self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False) self.bn = nn.BatchNorm2d(c2) self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity()) def forward(self, x): return self.act(self.bn(self.conv(x))) def forward_fuse(self, x): return self.act(self.conv(x)) def forward_fuse(self, x): return self.act(self.conv(x)) class Bottleneck(nn.Module): # 标准bottleneck def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion super().__init__() c_ = int(c2 * e) # hidden channels self.cv1 = Conv(c1, c_, 1, 1) self.cv2 = Conv(c_, c2, 3, 1, g=g) self.add = shortcut and c1 == c2 def forward(self, x): return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x)) class C3(nn.Module): # CSP Bottleneck with 3 convolutions def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion super().__init__() c_ = int(c2 * e) # hidden channels self.cv1 = Conv(c1, c_, 1, 1) self.cv2 = Conv(c1, c_, 1, 1) self.cv3 = Conv(2 * c_, c2, 1) # act=FReLU(c2) self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)]) # self.m = nn.Sequential(*[CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n)]) def forward(self, x): return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1)) class SPPF(nn.Module): # Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher def __init__(self, c1, c2, k=5): # equivalent to SPP(k=(5, 9, 13)) super().__init__() c_ = c1 // 2 # hidden channels self.cv1 = Conv(c1, c_, 1, 1) self.cv2 = Conv(c_ * 4, c2, 1, 1) self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2) def forward(self, x): x = self.cv1(x) with warnings.catch_warnings(): warnings.simplefilter('ignore') # suppress torch 1.9.0 max_pool2d() warning y1 = self.m(x) y2 = self.m(y1) return self.cv2(torch.cat([x, y1, y2, self.m(y2)], 1)) class Concat(nn.Module): # 沿维度连接张量列表 def __init__(self, dimension=1): super().__init__() self.d = dimension def forward(self, x): return torch.cat(x, self.d) def autopad(k, p=None): # kernel, padding # 计算然卷积结果与输入具有相同大小的padding if p is None: p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad return p3.2 backboneclass Yolov5sV6Backbone(nn.Module): def __init__(self): super(Yolov5sV6Backbone,self).__init__() self.backbone_part1 = nn.Sequential( Conv(3,32,6,2,2), # 0 Conv(32,64,3,2), # 1 C3(64,64), #2 Conv(64,128,3,2) #3 ) self.backbone_part2 = nn.Sequential( C3(128,128), # 4_1 Conv(128,256,3,2) # 5 ) self.backbone_part3 = nn.Sequential( C3(256,256), # 6 Conv(256,512,3,2) # 7 ) self.backbone_part4 = nn.Sequential( C3(512,512), # 8 SPPF(512,512,5), # 9 ) def forward(self,x): p3 = self.backbone_part1(x) p4 = self.backbone_part2(p3) p5 = self.backbone_part3(p4) p6 = self.backbone_part4(p5) return p3,p4,p5,p6调用测试backbone = Yolov5sV6Backbone() fake_input = torch.rand(1,3,640,640) p3,p4,p5,p6 = backbone(fake_input) print(p3.shape,p4.shape,p5.shape,p6.shape)torch.Size([1, 128, 80, 80]) torch.Size([1, 256, 40, 40]) torch.Size([1, 512, 20, 20]) torch.Size([1, 512, 20, 20])3.3 headclass Yolov5sV6Head(nn.Module): def __init__(self): super(Yolov5sV6Head,self).__init__() self.head_part1 = nn.Sequential( Conv(512,256,1,1), # 10 nn.Upsample(None, 2, 'nearest') # 11 ) self.head_concat1 =Concat() # 12 self.head_part2 = nn.Sequential( C3(512,256), # 13 Conv(256,128), # 14 nn.Upsample(None, 2, 'nearest') # 15 ) self.head_concat2 = Concat() # 16 self.head_out1 = C3(256,128) # 17 # 128x80x80 self.head_part3 = Conv(128,128,3,2) # 18 self.head_concat3 = Concat() # 19 self.head_out2 = C3(384,256) # 20 self.head_part4 = Conv(256,256,3,2) # 21 self.head_concat4 = Concat() # 22 self.head_out3 = C3(768,512) # 23 # 512x40x40 def forward(self,p3,p4,p5,x): x = self.head_part1(x) x = self.head_concat1([x,p4]) x = self.head_part2(x) x = self.head_concat2([x,p3]) out1 = self.head_out1(x) x = self.head_part3(out1) x = self.head_concat3([x,p4]) out2 = self.head_out2(x) x = self.head_part4(out2) x = self.head_concat4([x,p5]) out3 = self.head_out3(x) return out1,out2,out3调用测试backbone = Yolov5sV6Backbone() head = Yolov5sV6Head() fake_input = torch.rand(1,3,640,640) p3,p4,p5,p6 = backbone(fake_input) out1,out2,out3 = head(p3,p4,p5,p6) print(out1.shape,out2.shape,out3.shape)3.4 detect 部分class Yolov5sV6Detect(nn.Module): stride = None # strides computed during build def __init__(self, nc=80, anchors=(), ch=[128,256,512], inplace=True): # detection layer super(Yolov5sV6Detect,self).__init__() self.nc = nc # number of classes self.no = nc + 5 # number of outputs per anchor self.nl = len(anchors) # number of detection layers self.na = len(anchors[0]) // 2 # number of anchors self.grid = [torch.zeros(1)] * self.nl # init grid self.anchor_grid = [torch.zeros(1)] * self.nl # init anchor grid self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2)) # shape(nl,na,2) self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv self.inplace = inplace # use in-place ops (e.g. slice assignment) def forward(self, x): z = [] # inference output for i in range(self.nl): x[i] = self.m[i](x[i]) # conv bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85) x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous() if not self.training: # inference if self.grid[i].shape[2:4] != x[i].shape[2:4]: self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i) y = x[i].sigmoid() if self.inplace: y[..., 0:2] = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i] # xy y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh else: # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953 xy = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i] # xy wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh y = torch.cat((xy, wh, y[..., 4:]), -1) z.append(y.view(bs, -1, self.no)) return x if self.training else (torch.cat(z, 1), x) def _make_grid(self, nx=20, ny=20, i=0): d = self.anchors[i].device if check_version(torch.__version__, '1.10.0'): # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibility yv, xv = torch.meshgrid([torch.arange(ny, device=d), torch.arange(nx, device=d)], indexing='ij') else: yv, xv = torch.meshgrid([torch.arange(ny, device=d), torch.arange(nx, device=d)]) grid = torch.stack((xv, yv), 2).expand((1, self.na, ny, nx, 2)).float() anchor_grid = (self.anchors[i].clone() * self.stride[i]) \ .view((1, self.na, 1, 1, 2)).expand((1, self.na, ny, nx, 2)).float() return grid, anchor_grid调用测试anchors = [ [10,13, 16,30, 33,23], [30,61, 62,45, 59,119], [116,90, 156,198, 373,326] ] backbone = Yolov5sV6Backbone() head = Yolov5sV6Head() detect = Yolov5sV6Detect(nc=80,anchors=anchors) fake_input = torch.rand(1,3,640,640) p3,p4,p5,p6 = backbone(fake_input) out1,out2,out3 = head(p3,p4,p5,p6) out1,out2,out3 = detect([out1,out2,out3]) print(out1.shape,out2.shape,out3.shape)torch.Size([1, 3, 80, 80, 85]) torch.Size([1, 3, 40, 40, 85]) torch.Size([1, 3, 20, 20, 85])3.5 整体组装class Yolov5sV6(nn.Module): def __init__(self,nc=80,anchors=()): super(Yolov5sV6,self).__init__() self.backbone = Yolov5sV6Backbone() self.head = Yolov5sV6Head() self.detect = Yolov5sV6Detect(nc,anchors) def forward(self,x): p3,p4,p5,p6 = self.backbone(x) out1,out2,out3 = self.head(p3,p4,p5,p6) out1,out2,out3 = self.detect([out1,out2,out3]) return out1,out2,out3调用测试anchors = [ [10,13, 16,30, 33,23], [30,61, 62,45, 59,119], [116,90, 156,198, 373,326] ] yolov5s = Yolov5sV6(nc=80,anchors=anchors) fake_input = torch.rand(1,3,640,640) out1,out2,out3 = yolov5s(fake_input) print(out1.shape,out2.shape,out3.shape)torch.Size([1, 3, 80, 80, 85]) torch.Size([1, 3, 40, 40, 85]) torch.Size([1, 3, 20, 20, 85])4.模型复杂度分析模型名Input模型大小全精度模型大小半精度参数量FLOPSbackbone640x64026.0MB13.1MB3.80M4.42GFLOPShead640x64011.5MB5.78MB3.00M2.79GFLOPSdetect640x640897KB450KB0.23M0.37GFLOPSYolov5s640x64026.9M13.5M7.03M7.58GFLOPS参考资料https://github.com/ultralytics/yolov5YOLOv5代码详解(common.py部分)Yolov5从入门到放弃(一)---yolov5网络架构YOLOV5网络结构
2022年01月07日
2,156 阅读
0 评论
0 点赞